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We give necessary and sufficient conditions for a function defined on a closed subset
of IR N to be the uniform limit of harmonic functions. ~j 1993 Academic Press. Inc.

Let F be closed subset of IR N
, N ~ 2. We denote by fl(F) the closure in

the topology of uniform convergence on F of the space of all harmonic
functions on (neighbourhoods of) F.

We shall make use of the fine potential theory for which we refer the
reader to [FI, F3, F4].

THEOREM. Let F be a closed subset of IR N and u a complex-valued
function on F. Then u E fl(F) if and only if

(1) u is continuous on F;

(2) u is finely harmonic on the fine interior of F.

Proof. The case when F is compact was proved by Debiard and
Gaveau [DG] (see also [BH]). For closed sets, the proof follows from the
compact case and the localization theorem for harmonic functions on
closed sets [GH].

Indeed, suppose that u E fl(F). Then, if K is any closed ball, the restric-
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tion u I(F II K) of u to the compact set F II K is in fi(F II K). Thus by the
Theorem of Debiard and Gaveau, u is continuous on F II K and finely
harmonic on the fine interior of F II K. Since this is true for any closed
ball K, it follows that u is continuous on F and finely harmonic on the fine
interior of F.

Conversely, suppose that u is continuous on F and finely harmonic on
the fine interior of F. Again, let K be any closed ball. Since no point of the
boundary of K lies in the fine interior of F II K, it follows that u is con­
tinuous on F II K and finely harmonic on the fine interior of F II K. By the
Debiard and Gaveau Theorem, u I(F II K) E fi(F II K). Since this is so for
every closed ball K, it follows from the localization theorem for harmonic
approximation on closed sets [GH, Theorem 2.3.2 and Corollary 2.3.8]
that u E H(F).

Remarks. (1) Fine potential theory is usually investigated on domains
which admit nonconstant positive superharmonic functions. This would, at
first, seem to exclude the plane 1R 2

• However, if U is any finely open set in
1R 2

, we may define a function to be finely harmonic on U if its restriction
to the intersection of U with any ball is finely harmonic.

(2) If Q is an open set in IR N and F is a subset of Q which is closed
in the relative topology of D, then our theorem (and its proof) still hold.
The more general situation where D is a Riemannian manifold is currently
being considered by Bagby and Blanchet [BB].

(3) An analogous result also holds for approximation by continuous
subharmonic functions. For compact sets this is due to Bliedtner and
Hansen [BH] (see also [F2]), while for closed sets the result is currently
being written [G].

REFERENCES

[BB] T. BAGBY AND P. BLANCHET, Uniform harmonic approximation on Riemannian
manifolds, J. d'Ana/yse Math., to appear.

[BH] 1. BLIEDTNER AND W. HANSEN, Simplicial cones in potential theory, I, Invent. Math. 29
(1975),83-110; II, Invent. Math. 46 (1978), 255-275.

[DG] A. DEBIARD AND B. GAVEAIJ, Potentiel fin et algebres de fonctions analytiques, I,
J.Funct. Anal. 16 (1974), 289-304; II, J.Funct. Anal. 17 (1974), 296--310.

[FI] B. FUGLEDE, "Finely Harmonic Functions," Lecture Notes in Mathematics, Vol. 289,
Springer-Verlag, New York/Berlin, 1972.

[F2] B. FUGLEDE, Localization in fine potential theory and uniform approximation by
subharmonic functions, J. Funct. Anal. 49 (1982), 57-72.

[F3] B. FUGLEDE, Fine potential theory-A survey, Mitt. Math. Ges. DDR 2/3 (1986), 3-2l.
[F4] B. FUGLEDE, Fine potential theory, in "Potential Theory Surveys and Problems,"



140

[G]
[GH]

GAUTHlER AND LADOUCEUR

pp.81-97, Lecture Notes in Mathematics, Vol. 1344, Springer-Verlag, New York/
Berlin, 1988.
P. M. GAUTHIER, Untitled manuscript, in preparation.
P. M. GAUTHIER AND W. HENGARTNER, "Approximation Qualitative sur des
Ensembles Non Somes," Seminaire de Mathematiques Superieures, Presses de
I'Universite de Montreal, 1982.


